Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1351087, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38314352

RESUMO

Neural interfacing devices interact with the central nervous system to alleviate functional deficits arising from disease or injury. This often entails the use of invasive microelectrode implants that elicit inflammatory responses from glial cells and leads to loss of device function. Previous work focused on improving implant biocompatibility by modifying electrode composition; here, we investigated the direct effects of electrical stimulation on glial cells at the electrode interface. A high-throughput in vitro system that assesses primary glial cell response to biphasic stimulation waveforms at 0 mA, 0.15 mA, and 1.5 mA was developed and optimized. Primary mixed glial cell cultures were generated from heterozygous CX3CR-1+/EGFP mice, electrically stimulated for 4 h/day over 3 days using 75 µm platinum-iridium microelectrodes, and biomarker immunofluorescence was measured. Electrodes were then imaged on a scanning electron microscope to assess sustained electrode damage. Fluorescence and electron microscopy analyses suggest varying degrees of localized responses for each biomarker assayed (Hoescht, EGFP, GFAP, and IL-1ß), a result that expands on comparable in vivo models. This system allows for the comparison of a breadth of electrical stimulation parameters, and opens another avenue through which neural interfacing device developers can improve biocompatibility and longevity of electrodes in tissue.

2.
J Neurochem ; 168(3): 251-268, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308566

RESUMO

The striatum can be divided into four anatomically and functionally distinct domains: the dorsolateral, dorsomedial, ventral and the more recently identified caudolateral (tail) striatum. Dopamine transmission in these striatal domains underlies many important behaviours, yet little is known about this phenomenon in the tail striatum. Furthermore, the tail is divided anatomically into four divisions (dorsal, medial, intermediate and lateral) based on the profile of D1 and D2 dopamine receptor-expressing medium spiny neurons, something that is not seen elsewhere in the striatum. Considering this organisation, how dopamine transmission occurs in the tail striatum is of great interest. We recorded evoked dopamine release in the four tail divisions, with comparison to the dorsolateral striatum, using fast-scan cyclic voltammetry in rat brain slices. Contributions of clearance mechanisms were investigated using dopamine transporter knockout (DAT-KO) rats, pharmacological transporter inhibitors and dextran. Evoked dopamine release in all tail divisions was smaller in amplitude than in the dorsolateral striatum and, importantly, regional variation was observed: dorsolateral ≈ lateral > medial > dorsal ≈ intermediate. Release amplitudes in the lateral division were 300% of that in the intermediate division, which also exhibited uniquely slow peak dopamine clearance velocity. Dopamine clearance in the intermediate division was most dependent on DAT, and no alternative dopamine transporters investigated (organic cation transporter-3, norepinephrine transporter and serotonin transporter) contributed significantly to dopamine clearance in any tail division. Our findings confirm that the tail striatum is not only a distinct dopamine domain but also that each tail division has unique dopamine transmission characteristics. This supports that the divisions are not only anatomically but also functionally distinct. How this segregation relates to the overall function of the tail striatum, particularly the processing of multisensory information, is yet to be determined.


Assuntos
Dopamina , Cauda , Ratos , Animais , Corpo Estriado , Neostriado , Antagonistas de Dopamina/farmacologia
3.
Neurosci Insights ; 18: 26331055231186993, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465214

RESUMO

Chondroitin sulfate proteoglycans (CSPGs), one of the major extracellular matrix components of the glial scar that surrounds central nervous system (CNS) injuries, are known to inhibit the regeneration of neurons. This study investigated whether pleiotrophin (PTN), a growth factor upregulated during early CNS development, can overcome the inhibition mediated by CSPGs and promote the neurite outgrowth of neurons in vitro. The data showed that a CSPG matrix inhibited the outgrowth of neurites in primary cortical neuron cultures compared to a control matrix. PTN elicited a dose-dependent increase in the neurite outgrowth even in the presence of the growth inhibitory CSPG matrix, with optimal growth at 15 ng mL-1 of PTN (114.8% of neuronal outgrowth relative to laminin control). The growth-promoting effect of PTN was blocked by inhibition of the receptor anaplastic lymphoma kinase (ALK) by alectinib in a dose-dependent manner. Neurite outgrowth in the presence of this CSPG matrix was induced by activation of the protein kinase B (AKT) pathway, a key downstream mediator of ALK activation. This study identified PTN as a dose-dependent regulator of neurite outgrowth in primary cortical neurons cultured in the presence of a CSPG matrix and identified ALK activation as a key driver of PTN-induced growth.

4.
Heliyon ; 9(6): e16908, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484415

RESUMO

The intestinal microbiota has been proposed to influence human mental health and cognition through the gut-brain axis. Individuals experiencing recurrent Clostridioides difficile infection (rCDI) frequently report depressive symptoms, which are improved after fecal microbiota transplantation (FMT); however, mechanisms underlying this association are poorly understood. Short-chain fatty acids and carboxylic acids (SCCA) produced by the intestinal microbiota cross the blood brain barrier and have been proposed to contribute to gut-brain communication. We hypothesized that changes in serum SCCA measured before and after successful FMT for rCDI influences the inflammatory response of microglia, the resident immune cells of the central nervous system. Serum SCCA were quantified using gas chromatography-mass spectroscopy from 38 patients who participated in a randomized trial comparing oral capsule-vs colonoscopy-delivered FMT for rCDI, and quality of life was assessed by SF-36 at baseline, 4, and 12 weeks after FMT treatment. Successful FMT was associated with improvements in mental and physical health, as well as significant changes in a number of circulating SCCA, including increased butyrate, 2-methylbutyrate, valerate, and isovalerate, and decreased 2-hydroxybutyrate. Primary cultured microglia were treated with SCCA and the response to a pro-inflammatory stimulus was measured. Treatment with a combination of SCCA based on the post-FMT serum profile, but not single SCCA species, resulted in significantly reduced inflammatory response including reduced cytokine release, reduced nitric oxide release, and accumulation of intracellular lipid droplets. This suggests that both levels and diversity of SCCA may be an important contributor to gut-brain communication.

5.
BMC Biomed Eng ; 4(1): 7, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057631

RESUMO

Neural interface devices interact with the central nervous system (CNS) to substitute for some sort of functional deficit and improve quality of life for persons with disabilities. Design of safe, biocompatible neural interface devices is a fast-emerging field of neuroscience research. Development of invasive implant materials designed to directly interface with brain or spinal cord tissue has focussed on mitigation of glial scar reactivity toward the implant itself, but little exists in the literature that directly documents the effects of electrical stimulation on glial cells. In this review, a survey of studies documenting such effects has been compiled and categorized based on the various types of stimulation paradigms used and their observed effects on glia. A hybrid neuroscience cell biology-engineering perspective is offered to highlight considerations that must be made in both disciplines in the development of a safe implant. To advance knowledge on how electrical stimulation affects glia, we also suggest experiments elucidating electrochemical reactions that may occur as a result of electrical stimulation and how such reactions may affect glia. Designing a biocompatible stimulation paradigm should be a forefront consideration in the development of a device with improved safety and longevity.

6.
J Neurochem ; 162(5): 417-429, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35869680

RESUMO

A distinct population of dopamine neurons in the substantia nigra pars lateralis (SNL) has a unique projection to the most caudolateral (tail) region of the striatum. Here, using two electrochemical techniques to measure basal dopamine and electrically evoked dopamine release in anesthetized rats, we characterized this pathway, and compared it with the 'classic' nigrostriatal pathway from neighboring substantia nigra pars compacta (SNc) dopamine neurons to the dorsolateral striatum. We found that the tail striatum constitutes a distinct dopamine domain compared with the dorsolateral striatum, with consistently lower basal and evoked dopamine, and diverse dopamine release kinetics. Importantly, electrical stimulation of the SNL and SNc evoked dopamine release in entirely separate striatal regions; the tail and dorsolateral striatum, respectively. Furthermore, we showed that stimulation of the subthalamic nucleus (STN) evoked dopamine release exclusively in the tail striatum, likely via the SNL, consistent with previous anatomical evidence of STN afferents to SNL dopamine neurons. Our work identifies the STN as an important modulator of dopamine release in a novel dopamine pathway to the tail striatum, largely independent of the classic nigrostriatal pathway, which necessitates a revision of the basal ganglia circuitry with the STN positioned as a central integrator of striatal information.


Assuntos
Núcleo Subtalâmico , Animais , Gânglios da Base/metabolismo , Corpo Estriado/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Ratos , Substância Negra/metabolismo , Núcleo Subtalâmico/fisiologia
7.
Neuroscience ; 491: 43-64, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35331847

RESUMO

Under normal conditions, dopamine (DA) clearance after release largely depends on uptake by the DA transporter (DAT). DAT expression/activity is reduced in some neuropsychiatric and neurological disorders. Our aim was to characterize the behavioral, neurochemical and electrophysiological effects of eliminating DAT in a novel knockout rat model we generated using CRISPR/Cas9. Consistent with existing DAT-KO models, our DAT-KO rats displayed increased locomotion, paradoxical calming by amphetamine, and reduced kinetics of DA clearance after stimulated release. Reduced DA kinetics were demonstrated using fast-scan cyclic voltammetry in brain slices containing the striatum or substantia nigra pars compacta (SNc) and in the dorsal striatum in vivo. Cocaine enhanced DA release in wild-type (WT) but not DAT-KO rats. Basal extracellular DA concentration measured with fast-scan controlled-adsorption voltammetry was higher in DAT-KO rats both in the striatum and SNc and was enhanced by L-DOPA (particularly after pharmacological block of monoamine oxidase), confirming that DA release after L-DOPA is not due to DAT reversal. The baseline firing frequency of SNc neurons was similar in both genotypes. However, D2 receptor-mediated inhibition of firing (by quinpirole or L-DOPA) was blunted in DAT-KO rats, while GABAB-mediated inhibition was preserved. We have also provided new data for the DAT-KO rat regarding the effects of slowing DA diffusion with dextran and blocking organic cation transporter 3 with corticosterone. Together, our results validate our DAT-KO rat and provide new insights into the mechanisms of chronic dysregulation of the DA system by addressing several unresolved issues in previous studies with other DAT-KO models.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Dopamina , Anfetamina/farmacologia , Animais , Corpo Estriado/metabolismo , Dopamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Levodopa/farmacologia , Ratos
8.
J Neuroinflammation ; 19(1): 9, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991625

RESUMO

BACKGROUND: Gangliosides are glycosphingolipids highly enriched in the brain, with important roles in cell signaling, cell-to-cell communication, and immunomodulation. Genetic defects in the ganglioside biosynthetic pathway result in severe neurodegenerative diseases, while a partial decrease in the levels of specific gangliosides was reported in Parkinson's disease and Huntington's disease. In models of both diseases and other conditions, administration of GM1-one of the most abundant gangliosides in the brain-provides neuroprotection. Most studies have focused on the direct neuroprotective effects of gangliosides on neurons, but their role in other brain cells, in particular microglia, is not known. In this study we investigated the effects of exogenous ganglioside administration and modulation of endogenous ganglioside levels on the response of microglia to inflammatory stimuli, which often contributes to initiation or exacerbation of neurodegeneration. METHODS: In vitro studies were performed using BV2 cells, mouse, rat, and human primary microglia cultures. Modulation of microglial ganglioside levels was achieved by administration of exogenous gangliosides, or by treatment with GENZ-123346 and L-t-PDMP, an inhibitor and an activator of glycolipid biosynthesis, respectively. Response of microglia to inflammatory stimuli (LPS, IL-1ß, phagocytosis of latex beads) was measured by analysis of gene expression and/or secretion of pro-inflammatory cytokines. The effects of GM1 administration on microglia activation were also assessed in vivo in C57Bl/6 mice, following intraperitoneal injection of LPS. RESULTS: GM1 decreased inflammatory microglia responses in vitro and in vivo, even when administered after microglia activation. These anti-inflammatory effects depended on the presence of the sialic acid residue in the GM1 glycan headgroup and the presence of a lipid tail. Other gangliosides shared similar anti-inflammatory effects in in vitro models, including GD3, GD1a, GD1b, and GT1b. Conversely, GM3 and GQ1b displayed pro-inflammatory activity. The anti-inflammatory effects of GM1 and other gangliosides were partially reproduced by increasing endogenous ganglioside levels with L-t-PDMP, whereas inhibition of glycolipid biosynthesis exacerbated microglial activation in response to LPS stimulation. CONCLUSIONS: Our data suggest that gangliosides are important modulators of microglia inflammatory responses and reveal that administration of GM1 and other complex gangliosides exerts anti-inflammatory effects on microglia that could be exploited therapeutically.


Assuntos
Anti-Inflamatórios/farmacologia , Gangliosídeo G(M1)/farmacologia , Inflamação/patologia , Microglia/efeitos dos fármacos , Animais , Células Cultivadas , Dioxanos/farmacologia , Humanos , Inflamação/metabolismo , Interleucina-1beta/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/metabolismo , Microglia/patologia , Fagocitose/efeitos dos fármacos , Pirrolidinas/farmacologia , Ratos
9.
Cell Mol Neurobiol ; 42(1): 225-242, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33839994

RESUMO

Phenelzine (PLZ) is a monoamine oxidase (MAO)-inhibiting antidepressant with anxiolytic properties. This multifaceted drug has a number of pharmacological and neurochemical effects in addition to inhibition of MAO, and findings on these effects have contributed to a body of evidence indicating that PLZ also has neuroprotective/neurorescue properties. These attributes are reviewed in this paper and include catabolism to the active metabolite ß-phenylethylidenehydrazine (PEH) and effects of PLZ and PEH on the GABA-glutamate balance in brain, sequestration of reactive aldehydes, and inhibition of primary amine oxidase. Also discussed are the encouraging findings of the effects of PLZ in animal models of stroke, spinal cord injury, traumatic brain injury, and multiple sclerosis, as well other actions such as reduction of nitrative stress, reduction of the effects of a toxin on dopaminergic neurons, potential anticonvulsant actions, and effects on brain-derived neurotrophic factor, neural cell adhesion molecules, an anti-apoptotic factor, and brain levels of ornithine and N-acetylamino acids.


Assuntos
Antidepressivos , Inibidores da Monoaminoxidase , Fármacos Neuroprotetores , Fenelzina , Animais , Antidepressivos/farmacologia , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Fármacos Neuroprotetores/farmacologia , Fenelzina/farmacologia , Ratos , Ratos Sprague-Dawley
10.
Front Cell Neurosci ; 15: 634020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889075

RESUMO

Microglia are the primary cells in the central nervous system that identify and respond to injury or damage. Such a perturbation in the nervous system induces the release of molecules including ATP and glutamate that act as damage-associated molecular patterns (DAMPs). DAMPs are detected by microglia, which then regulate the inflammatory response in a manner sensitive to their surrounding environment. The available data indicates that ATP and glutamate can induce the release of pro inflammatory factors TNF (tumor necrosis factor), IL-1ß (interleukin 1 beta), and NO (nitric oxide) from microglia. However, non-physiological concentrations of ATP and glutamate were often used to derive these insights. Here, we have compared the response of spinal cord microglia (SM) relative to brain microglia (BM) using physiologically relevant concentrations of glutamate and ATP that mimic injured conditions in the central nervous system. The data show that ATP and glutamate are not significant modulators of the release of cytokines from either BM or SM. Consistent with previous studies, spinal microglia exhibited a general trend toward reduced release of inflammatory cytokines relative to brain-derived microglia. Moreover, we demonstrate that the responses of microglia to these DAMPs can be altered by modifying the biochemical milieu in their surrounding environment. Preconditioning brain derived microglia with media from spinal cord derived mixed glial cultures shifted their release of IL-1ß and IL-6 to a less inflammatory phenotype consistent with spinal microglia.

11.
J Mech Behav Biomed Mater ; 114: 104176, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33184015

RESUMO

Many investigations on mild traumatic brain injury (mTBI) aim to further understand how cells in the brain react to the mechanical forces associated with the injury. While it is known that rapid head rotation is a mechanism contributing to mTBI, establishing definitive thresholds for head rotation has proved challenging. One way to advance determining mechanisms and thresholds for injury is through in vitro models. Here, an apparatus has been designed that is capable of delivering rotational forces to three-dimensional (3D) hydrogel cell cultures. Using an in vitro model, we test the hypothesis that rotational kinematics can activate microglia suspended in a 3-dimensional mixed glia environment (absent neurons). The impact apparatus was able to deliver peak angular velocities of approximately 45 rad/s, a magnitude for angular velocity that in select literature is associated with diffuse brain injury. However, no measurable glial cell reactivity was observed in response to the rotational kinematics through any of the chosen metrics (nitric oxide, pro-inflammatory cytokine release and proportion of amoeboid activated microglia). The results generated from this study suggest that rotation of the glia alone did not cause activation - in future work we will investigate the effect of neuronal contributions in activating glia.


Assuntos
Concussão Encefálica , Fenômenos Biomecânicos , Técnicas de Cultura de Células , Humanos , Hidrogéis , Microglia
12.
Healthc Pap ; 19(1): 59-64, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32310754

RESUMO

Value-based healthcare (VBHC) can be interpreted in many ways depending on one's jurisdiction. Often it is used synonymously with cost-effectiveness. In Alberta, VBHC might more appropriately be termed "values-based healthcare." This reflects our belief that a healthcare system should meet the needs and desires of its population and contribute to overall wellness. We therefore developed a framework based on the dimensions of quality, the Quadruple Aim and feasibility considerations, which enables us to assess and measure our system activities and initiatives to determine if they are in keeping with VBHC in the Alberta context.


Assuntos
Prestação Integrada de Cuidados de Saúde/organização & administração , Necessidades e Demandas de Serviços de Saúde/organização & administração , Determinantes Sociais da Saúde , Participação dos Interessados , Alberta , Planejamento em Saúde Comunitária , Humanos , Saúde da População
13.
J Card Fail ; 26(7): 610-617, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32304875

RESUMO

BACKGROUND: Surveillance and outcome studies for heart failure (HF) require accurate identification of patients with HF. Algorithms based on International Classification of Diseases (ICD) codes to identify HF from administrative data are inadequate owing to their relatively low sensitivity. Detailed clinical information from electronic medical records (EMRs) is potentially useful for improving ICD algorithms. This study aimed to enhance the ICD algorithm for HF definition by incorporating comprehensive information from EMRs. METHODS: The study included 2106 inpatients in Calgary, Alberta, Canada. Medical chart review was used as the reference gold standard for evaluating developed algorithms. The commonly used ICD codes for defining HF were used (namely, the ICD algorithm). The performance of different algorithms using the free text discharge summaries from a population-based EMR were compared with the ICD algorithm. These algorithms included a keyword search algorithm looking for HF-specific terms, a machine learning-based HF concept (HFC) algorithm, an EMR structured data based algorithm, and combined algorithms (the ICD and HFC combined algorithm). RESULTS: Of 2106 patients, 296 (14.1%) were patients with HF as determined by chart review. The ICD algorithm had 92.4% positive predictive value (PPV) but low sensitivity (57.4%). The EMR keyword search algorithm achieved a higher sensitivity (65.5%) than the ICD algorithm, but with a lower PPV (77.6%). The HFC algorithm achieved a better sensitivity (80.0%) and maintained a reasonable PPV (88.9%) compared with the ICD algorithm and the keyword algorithm. An even higher sensitivity (83.3%) was reached by combining the HFC and ICD algorithms, with a lower PPV (83.3%). The structured EMR data algorithm reached a sensitivity of 78% and a PPV of 54.2%. The combined EMR structured data and ICD algorithm had a higher sensitivity (82.4%), but the PPV remained low at 54.8%. All algorithms had a specificity ranging from 87.5% to 99.2%. CONCLUSIONS: Applying natural language processing and machine learning on the discharge summaries of inpatient EMR data can improve the capture of cases of HF compared with the widely used ICD algorithm. The utility of the HFC algorithm is straightforward, making it easily applied for HF case identification.


Assuntos
Insuficiência Cardíaca , Classificação Internacional de Doenças , Algoritmos , Registros Eletrônicos de Saúde , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/terapia , Humanos , Processamento de Linguagem Natural
14.
Int J Radiat Biol ; 96(1): 22-34, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30605362

RESUMO

Purpose: In a significant nuclear event, hundreds of thousands of individuals will require rapid triage for absorbed radiation to ensure effective medical treatment and efficient use of medical resources. We are developing a rapid screening method to assess whether an individual received an absorbed dose of ≥2 Gy based on the analysis of a specific panel of blood proteins in a fingerstick blood sample.Materials and methods: We studied a data set of 1051 human blood samples obtained from radiotherapy patients, normal healthy individuals, and several special population groups. We compared the findings in humans with those from irradiation studies in non-human primates (NHPs).Results: We identified a panel of three protein biomarkers, salivary alpha amylase (AMY1), Flt3 ligand (FLT3L), and monocyte chemotactic protein 1 (MCP1), which are upregulated in human patients receiving fractionated doses of total body irradiation (TBI) therapy as a treatment for cancer. These proteins exhibited a similar radiation response in NHPs after single acute or fractionated doses of ionizing radiation.Conclusion: Our work provides confidence in this biomarker panel for biodosimetry triage using fingerstick blood samples and in the use of NHPs as a model for irradiated humans.


Assuntos
Proteínas Sanguíneas/análise , Radiometria/métodos , Triagem/métodos , Adolescente , Adulto , Idoso , Animais , Biomarcadores/sangue , Criança , Feminino , Humanos , Imunoensaio , Macaca mulatta , Masculino , Pessoa de Meia-Idade , Adulto Jovem
16.
Mol Neurobiol ; 56(9): 6409-6425, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30805836

RESUMO

Microglia are the resident immune cells of the central nervous system that mediate the life and death of nervous tissue. During normal function, they exhibit a surveying phenotype and maintain vital functions in nervous tissue. In the event of injury or disease, chronic inflammation can result, wherein microglia develop a hyper-activated phenotype, shed their regenerative function, actively kill contiguous cells, and can partition injured tissue by initiating scar formation. With recoverable injury, microglia can develop a primed phenotype, where they appear to recover from an inflammatory event, but are limited in their support functions and show inappropriate responses to future injury often associated with neurodegenerative disorders. These microglial phenotypes were acutely recreated in vitro with potent pro- and anti-inflammatory treatments. Primary cultured microglia or mixed glia (microglia, astrocytes, and oligodendrocytes) were treated for 6 h with lipopolysaccharide (LPS). Recovery from an inflammatory state was modeled with 18-h treatment of the anti-inflammatory steroid dexamethasone. The cells were then treated for 24 h with interferon gamma (IFNγ) to detect inflammatory memory after recovery. Surveying was best represented in the untreated vehicle (Veh) cases and was characterized by negligible secretion of pro-inflammatory factors, limited expression of immune proteins such as induced nitric oxide synthase (iNOS), major histocompatibility complex class II (MHCII), relatively high expression of brain-derived and glial-derived neurotrophic factors (BDNF and GDNF), and thinly branched smaller microglia. Activation was noted in the LPS- and IFNγ-treated microglia with increased cytokines, NO, NGF, iNOS, proliferation, phagocytosis, reduced BDNF, and flattened round amoeboid-shaped microglia. Priming was observed to be an incomplete surveying restoration using dexamethasone from an activation comparison of LPS, IFNγ, and LPS/IFNγ. Dexamethasone treatments resulted in the most profound dysregulation of expression of NO, TNF, IL-1ß, NGF, CD68, and MHCII as well as ramified morphology and uptake of myelin. These findings suggest microglial priming and hyper-activation may be effectively modeled in vitro to allow mechanistic investigations into these key cellular phenotypes.


Assuntos
Encéfalo/patologia , Microglia/patologia , Animais , Células Cultivadas , Inflamação/patologia , Masculino , Fatores de Crescimento Neural/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fagocitose , Fenótipo , Ratos Sprague-Dawley
17.
J Neurochem ; 148(6): 761-778, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30613984

RESUMO

Inflammatory insult to the central nervous system (CNS) can lead to development of depression, and subsequently depression is the most frequent psychiatric comorbidity following ischemic stroke, often limiting recovery and rehabilitation in patients. The initiators of inflammatory pathways in the CNS are microglia activated in response to acute ischemic stress, and anti-depressants have been shown to have anti-inflammatory effects in the CNS, promoting neuronal survival following ischemic insult. We have previously shown that the selective serotonin reuptake inhibitors (SSRIs) fluoxetine and citalopram promote neuronal survival after oxygen-glucose deprivation, an in vitro model of ischemia, by attenuating the release of glutamate and D-serine from activated microglia. Interestingly, we found that fluoxetine-treated microglial cultures contained fewer numbers of cells compared to other groups and hypothesized that fluoxetine and citalopram attenuated the release of glutamate and D-serine by promoting the apoptosis of microglia. The present study aimed to test and compare antidepressants from three distinct classes (tricyclics, monoamine oxidase inhibitors, and SSRIs) on microglial apoptosis. Primary microglia were treated with 1 µg/mL lipopolysaccharide and/or 10 µM antidepressants, and various apoptotic markers were assayed. Fluoxetine and its metabolite norfluoxetine decreased protein levels in cell lysates, decreased cell viability of microglia, and increased the expression of the apoptotic marker cleaved-caspase 3 in microglia. Live/dead nuclear staining also showed that fluoxetine- or norfluoxetine-treated cultures contained greater numbers of dying microglial cells compared to vehicle-treated cultures. Cultures treated with citalopram, phenelzine, or imipramine showed no evidence of inducing microglial apoptosis. Our results demonstrate that fluoxetine and norfluoxetine induce the apoptotic death of microglia, which may serve as a mechanism to attenuate the release of glutamate and D-serine from activated microglia. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Apoptose/efeitos dos fármacos , Fluoxetina/farmacologia , Microglia/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Animais , Antidepressivos de Segunda Geração/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Fluoxetina/análogos & derivados , Microglia/patologia , Ratos , Ratos Sprague-Dawley
18.
Mol Neurobiol ; 55(2): 1477-1487, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28176274

RESUMO

Inflammation is increasingly recognized as a contributor to the pathophysiology of neuropsychiatric disorders, including depression, anxiety disorders and autism, though the factors leading to contextually inappropriate or sustained inflammation in pathological conditions are yet to be elucidated. Microglia, as the key mediators of inflammation in the CNS, serve as likely candidates in initiating pathological inflammation and as an ideal point of therapeutic intervention. Glucose deprivation, as a component of the pathophysiology of ischemia or occurring transiently in diabetes, may serve to modify microglial function contributing to inflammatory injury. To this end, primary microglia were cultured from postnatal rat brain and subject to glucose deprivation in vitro. Microglia were characterized for their proliferation, phagocytic function and secretion of inflammatory factors, and tested for their capacity to respond to a potent inflammatory stimulus. In the absence of glucose, microglia remained capable of proliferation, phagocytosis and inflammatory activation and showed increased release of inflammatory factors after presentation of an inflammatory stimulus. Glucose-deprived microglia demonstrated increased phagocytic activity and decreased accumulation of lipids in lipid droplets over a 48-h timecourse, suggesting they may use scavenged lipids as a key alternate energy source during metabolic stress. In the present manuscript, we present novel findings that glucose deprivation may sensitize microglial release of inflammatory mediators and prime microglial functions for both survival and inflammatory roles, which may contribute to psychiatric comorbidities of ischemia, diabetes and/or metabolic disorder.


Assuntos
Encéfalo/metabolismo , Proliferação de Células/fisiologia , Hipoglicemia/metabolismo , Inflamação/metabolismo , Microglia/metabolismo , Animais , Células Cultivadas , Fagocitose/fisiologia , Ratos
19.
J Vis Exp ; (130)2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29286415

RESUMO

In the central nervous system, numerous acute injuries and neurodegenerative disorders, as well as implanted devices or biomaterials engineered to enhance function result in the same outcome: excess inflammation leads to gliosis, cytotoxicity, and/or formation of a glial scar that collectively exacerbate injury or prevent healthy recovery. With the intent of creating a system to model glial scar formation and study inflammatory processes, we have generated a 3D cell scaffold capable of housing primary cultured glial cells: microglia that regulate the foreign body response and initiate the inflammatory event, astrocytes that respond to form a fibrous scar, and oligodendrocytes that are typically vulnerable to inflammatory injury. The present work provides a detailed step-by-step method for the fabrication, culture, and microscopic characterization of a hyaluronic acid-based 3D hydrogel scaffold with encapsulated rat brain-derived glial cells. Further, protocols for characterization of cell encapsulation and the hydrogel scaffold by confocal immunofluorescence and scanning electron microscopy are demonstrated, as well as the capacity to modify the scaffold with bioactive substrates, with incorporation of a commercial basal lamina mixture to improved cell integration.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato , Inflamação/patologia , Neuroglia/patologia , Animais , Células Cultivadas , Ácido Hialurônico/química , Oligodendroglia/patologia , Ratos , Ratos Sprague-Dawley
20.
EMBO Mol Med ; 9(11): 1537-1557, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28993428

RESUMO

Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by motor, cognitive and psychiatric problems. Previous studies indicated that levels of brain gangliosides are lower than normal in HD models and that administration of exogenous ganglioside GM1 corrects motor dysfunction in the YAC128 mouse model of HD In this study, we provide evidence that intraventricular administration of GM1 has profound disease-modifying effects across HD mouse models with different genetic background. GM1 administration results in decreased levels of mutant huntingtin, the protein that causes HD, and in a wide array of beneficial effects that include changes in levels of DARPP32, ferritin, Iba1 and GFAP, modulation of dopamine and serotonin metabolism, and restoration of normal levels of glutamate, GABA, L-Ser and D-Ser. Treatment with GM1 slows down neurodegeneration, white matter atrophy and body weight loss in R6/2 mice. Motor functions are significantly improved in R6/2 mice and restored to normal in Q140 mice, including gait abnormalities that are often resistant to treatments. Psychiatric-like and cognitive dysfunctions are also ameliorated by GM1 administration in Q140 and YAC128 mice. The widespread benefits of GM1 administration, at molecular, cellular and behavioural levels, indicate that this ganglioside has strong therapeutic and disease-modifying potential in HD.


Assuntos
Gangliosídeo G(M1)/uso terapêutico , Doença de Huntington/tratamento farmacológico , Animais , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Ferritinas/metabolismo , Gangliosídeo G(M1)/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Ácido Glutâmico/metabolismo , Proteína Huntingtina/metabolismo , Doença de Huntington/mortalidade , Doença de Huntington/patologia , Infusões Intraventriculares , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Serotonina/metabolismo , Taxa de Sobrevida , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...